

Classificazione object-based di immagini multi-sensore per la generazione di mappe di irregolarità del terreno come input per simulazioni di velocità del vento

IEEE International Geoscience and Remote Sensing Symposium (IGARSS) 2007, July 23rd – 27th, 2007, Barcelona, Spain

Alan Forghani, Bob Cechet, Krishna Nadimpalli, Australian Centre for Remote Sensing (ACRES) and Risk Research Group, Geospatial & Earth Monitoring Division, Geoscience Australia

Obbiettivi

L'obbiettivo del lavoro è sviluppare una struttura di metodologia operativa applicando un approccio multisensore per generare un modello dell'irregolarità del terreno, sia nazionale che regionale, basato sullo standard di *wind loading* (carico di vento) di Australia e Nuova Zelanda (AUS/NZ). Il prodotto sarà incluso tra

ACRES Imagery

AUS/NZ
1170.2:202

Terrain
Map

V = Site wind speed for 8 directions
V_R = Regional Wind speeds
M_R = Wind directional multipliers
M_R = Topographic multiplier
M_s = Sheilding multiplier
M_s = Sheilding multiplier
M_s = Topographic multiplier
Site wind speeds = V_R x M_d x M_z x M_s x M_s

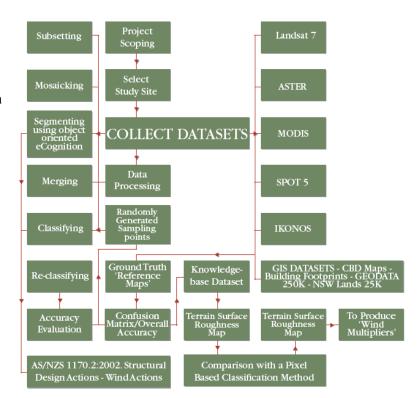

gli elementi utilizzati come "moltiplicatori del vento" (la quota, la schermatura e la topografia), allo scopo di generare delle mappe della velocità locale del vento.

Fig 1. Rappresentazione diagrammatica della derivazione dei moltiplicatori del vento da dati telerilevati e topografici, insieme al parametro di carico di vento standard di Australi/Nuova Zelanda

Metodologia

La **Figura 2** mostra un grafico con la metodologia seguita nel progetto.

Fig 2. Flusso di lavoro

Di seguito I principali passaggi:

- l'area di studio è stata selezionata includendo differenti paesaggi della regione del New South Wales, in Australia: NewCastle nel nord, Nowra nel sud e Bathurst ad ovest.
 In queste aree è presente un insieme di diversi usi del suolo che rappresentano bene le diverse categorie presenti a scala regionale/nazionale.
- I criteri per la selezione delle immagini sono la coincidenza temporale e l'assenza di nuvole. Tra il 12 settembre e il 9 dicembre 2004, sull'area di interesse sono state acquisite immagini dei sensori MODIS (bande da 1 a 7), Landsat TM, ASTER, SPOT-5 e IKONOS (**Tabella 1**). Tutte le immagini sono state proiettate in base al datum WGS84. le immagini sono state mosaicate ; quindi si è generato un subset del mosaico per coprire solo l'area di studio.

Imagery	Pixel Size (m)	Band	Spectral Range (µm)	Date of Acquisition
MODIS	250	1-2	620-876	7th November 2002
	500	3-7(X)	459-2155	
	1000	8-36(T)	405-14.385	
Landsat	15	8(P)	0.52-0.90	5th October 2002 (East of Study Area)
	30	1-7(X)	0.45-2.35	12th September 2002 (West of Study Area)
	60	6(T)	10.40-12.50	6th November 2002 (West of Study Area)
Aster	15	1-3(X)	0.520-0.860	26th November 2002
	30	4-9(X)	1.60-2.43	
	90	10-14(T)	8.125-11.65	
SPOT-5	2.5 and 5	P & X	0.48071	20th October 2002
	10	1-3 (X)	0.50-0.89	
	20	4(X)	1.58-1.75	
IKONOS		1(F)	0.45-0.90	8th October
		4(X)	0.45-0.85	

Tab 1. Specifiche dei dati utilizzati nello studio

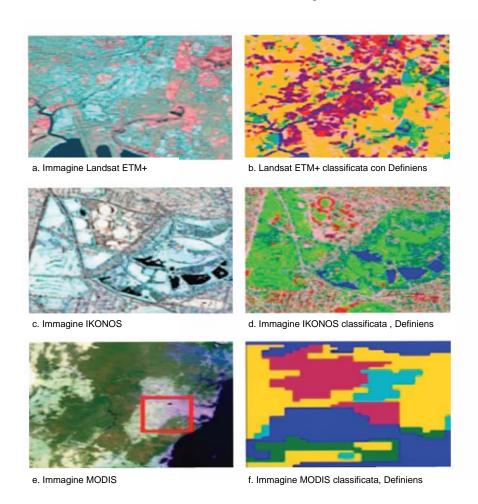
 La segmentazione delle immagini è stata effettuata usando il software Definiens. Il software applica la cosiddetta "multi-resolution segmentation" per creare degli oggetti a partire dai singoli pixel dell'immagine; gli oggetti sono posti su più livelli gerarchici a seconda della loro grandezza. I parametri che controllano l'algoritmo includono la scala, il colore, la forma degli oggetti (criterio di omogeneità) ma anche il peso dei singoli layer dell'immagine.

Sulla base degli oggetti, si è creata una gerarchia di classificazione, utilizzando i dati dei vari sensori:

- MODIS è stato utilizzato per derivare le prime 4 categorie di copertura del terreno: aree costruite, foreste, prati e acqua.
- I dati Landsat-7 e ASTER sono stati utilizzati per derivare le sottoclassi all'interno della classe urbano
- I dati SPOT-5 a 2.5 e 5 metri di risoluzione sono stati usati per differenziare le 5 sotto-classi urbane: costruito, aree metropolitane ad alta densità, piccole cittadine, piste degli aeroporti, e aree aperte in aree selezionate (Sydney, Wollongong e Newcastle)
- I dati IKONOS sono stati usati invece per differenziare le aree costruite dalle altre classi urbane

L'accuratezza della mappa del terreno derivata è stata valutata applicando diverse misure (omission and commission error); si è visto che l'accuratezza della classificazione è notevolmente migliorata (9-13%) con l'uso della tecnica object-based fornita dal software Definiens, rispetto alla classificazione pixel-oriented.

Risultati e conclusioni


Il metodo di classificazione object-based ha migliorato i risultati del 9-13 % sulle aree cittadine e metropolitane, rispetto a un classificatore che si basa solo sulle differenze spettrali, cioè pixel-based (**Figura 4**)

La valutazione del software Definiens ha rivelato che il processamento di grandi volumi di dati nel caso di Landsat 7, SPOT 5 e IKONOS era piuttosto lungo ma il risultato era molto buono

Le immagini Landsat TM/ETM+ sono adatte alla produzione di mappe del terreno con risoluzione di 30 e 100 metri. SPOT-5 dovrebbe essere usato solamente come sorgente di dati ancillari.

